On involutiveness of linear combinations of a quadratic matrix and an arbitrary matrix

نویسندگان

چکیده

We characterize the involutiveness of linear combinations form $a{\mathbf{A}} + b{\mathbf{B}}$ when $a,b$ are nonzero complex numbers, ${\mathbf{A}}$ is a quadratic $n \times n$ matrix and ${\mathbf{B}}$ an arbitrary matrix, under certain properties imposed on $\mathbf{A}$ $\mathbf{B}$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutiveness of linear combinations of a quadratic‎ ‎or tripotent matrix and an arbitrary matrix

In this article, we characterize the involutiveness of the linear combination of the forma1A1 +a2A2 when a1, a2 are nonzero complex numbers, A1 is a quadratic or tripotent matrix,and A2 is arbitrary, under certain properties imposed on A1 and A2.

متن کامل

involutiveness of linear combinations of a quadratic‎ ‎or tripotent matrix and an arbitrary matrix

in this article, we characterize the involutiveness of the linear combination of the forma1a1 +a2a2 when a1, a2 are nonzero complex numbers, a1 is a quadratic or tripotent matrix,and a2 is arbitrary, under certain properties imposed on a1 and a2.

متن کامل

On a quadratic matrix equation associated with an M-matrix∗

We study the quadratic matrix equation X2 − EX − F = 0, where E is diagonal and F is an M -matrix. Quadratic matrix equations of this type arise in noisy Wiener–Hopf problems for Markov chains. The solution of practical interest is a particular M -matrix solution. The existence and uniqueness of M -matrix solutions and numerical methods for finding the desired M -matrix solution are discussed b...

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe journal of mathematics and statistics

سال: 2021

ISSN: ['1303-5010']

DOI: https://doi.org/10.15672/hujms.705784